
Fun with strings: Maximal
Common Subsequences

What is a Subsequence?

It’s a new sequence created by deleting elements from the original sequence and
keeping the relative order of the remaining elements

1 8 3 9 28 4 1 39 198324 2 43 2 42 99 -1

What is a Subsequence?

It’s a new sequence created by deleting elements from the original sequence and
keeping the relative order of the remaining elements

1 8 3 9 28 4 1 39 198324 2 43 2 42 99 -1

What is a Subsequence?

It’s a new string created by deleting characters from the original string and keeping
the relative order of the remaining characters

sdfjlvasdjvaiuew

What is a Subsequence?

It’s a new string created by deleting characters from the original string and keeping
the relative order of the remaining characters

sdfjlvasdjvaiuew

What is a Subsequence?

a is a Subsequence

What is a Subsequence?

uq isnt a Subsequence

no crossing allowed!

Indeed

‘a’ is a subsequence of ‘What is a Subsequence?’

‘uq’ is not a subsequence of ‘What is a Subsequence?’

Subsequences are not necessarily contiguous

Substrings are
 contiguous

Subsequences:

sdfjlvasdjvaiuew

sdfjlvasdjvaiuew

Position doesn’t matter in subsequences

Only the relative position of the characters is important

Only the relative position of the characters is important

The actual positions the subsequence maps to don’t matter

^ called “embeddings” or “mappings”

no crss

The subsequence relation is transitive

e.g.: s seqn subsequence

=> s subsequence

Then, what is a common subsequence?

Well, you need something to make it common with

It’s a subsequence that appears in multiple strings you are analyzing

Then, what is a common subsequence?

Well, you need something to make it common with

It’s a subsequence that appears in multiple strings you are analyzing

Let’s start easy with 2 strings

What is a Maximal Common Subsequence?

First, take two strings

Then, find a common subsequence

What is a Maximal Common Subsequence?

1. first, take two strings

2. then find a common subsequence

What is a Maximal Common Subsequence?

1. first, take two strings

2. then find a common subsequence

What is a Maximal Common Subsequence?

1. first, take two strings

2. then find a common subsequence

What is a Maximal Common Subsequence?

1. first, take two strings

2. then find a common subsequence

-> fian
This is a common subsequence; is it maximal?

What is a Maximal Common Subsequence?

1. first, take two strings

2. then find a common subsequence

-> fian
This is a common subsequence; is it maximal? No: fiaon

Maximality

Subsequence W of X is maximal if it is not subsequence of other subsequences

Maximality

Subsequence W of X is maximal if it is not subsequence of other subsequences

fian fiaon

Maximality is subtle

Is it adcc maximal?

abdcacd

badbcdcc

Maximality is subtle

Is it adcc maximal?

no! abdcacd

badbcdcc

Maximality is subtle

Is it adcc maximal?

no! abdcacd

badbcdcc

Maximality is subtle

Is it adcc maximal?

no! abdcacd

badbcdcc

Maximality is subtle

Is it adcc maximal?

no! abdcc abdcacd

badbcdcc

Maximality is weird

Is it e maximal?

eabdcacd

badbcdcce

Maximality is weird

Is it e maximal?

Yes!! eabdcacd

badbcdcce

Our problem

Find all MCS between two strings X and Y

Trivial algorithm for finding all MCSs

1. Find all common subsequences
2. Filter out non-maximal ones by applying the definition

Trivial algorithm for finding all MCSs

1. Find all common subsequences (quite a lot!)
2. Filter out non-maximal ones (by checking if they are subseq. of other subseq.)

Trivial algorithm for finding all MCSs

1. Find all common subsequences (quite a lot! Is it feasible?)
2. Filter out non-maximal ones (by checking if they are subseq. of other subseq.)

Can we do better?

to be continued…

Sanity check

Questions? You still with me?

Longest Common Subsequences
Let’s take a detour

Easy definition:

the set of common subsequences whose length is maximum

The LCS problem consists in finding the length of an LCS

Use cases

DNA sequence alignment

https://doi.org/10.1787/19939019

Use cases

diff

Use cases

DNA sequence alignment

diff

Spelling error correction

Plagiarism detection

…

If a common
subsequence is longest

then it is maximal

If a common
subsequence is longest

then it is maximal

can you see why?

If a common
subsequence is longest

then it is maximal

Let , suppose by contradiction W is not maximal

Then there exists some and some :

 is still a subsequence of X and Y

But

A contradiction, as we supposed

The LCS problem reduces to the MCS problem

If we find all MCS we can list all LCS (keep the ones with maximum length)

The LCS problem reduces to the MCS problem

If we find all MCS we can list all LCS (keep the ones with maximum length)

… and of course know the maximal length

How do we compute one LCS for two strings?

Classical dynamic programming approach O(mn) where m=|X|, n=|Y|

How do we compute one LCS for two strings?

Classical dynamic programming approach O(mn) where m=|X|, n=|Y|

https://www.enjoyalgorithms.com/blog/longest-common-subsequence

How do we compute one LCS for two strings?

Classical dynamic programming approach O(mn) where m=|X|, n=|Y|

https://www.enjoyalgorithms.com/blog/longest-common-subsequence

How many LCS are there?

let

let

let

(if t mod 6 = 0)

Exponential even for two strings X and Y!!

https://arxiv.org/abs/cs/0301030

How many LCS embeddings are there?

let

let

let

(if t mod 6 = 0)

The number of embeddings is even greater!

https://arxiv.org/abs/cs/0301030

Since

Also the number of distinct MCS is exponential even for two strings!!

Complexity

LCS problem

Given a set of strings S, print the length of a LCS of S

For k strings

The LCS problem is NP-Hard [Maier 1978]

For 2 strings

The LCS problem has a conditional lower bound of [Abboud et al. 2015]
https://doi.org/10.1145/322063.322075

https://doi.org/10.1109/FOCS.2015.14

Complexity

LCS problem

Given a set of strings S, print the length of a LCS of S

For 2 strings

The LCS problem has a conditional lower bound of [Abboud et al. 2015]

-> based on the Strong Exponential Time Hypothesis (SETH).

-> it states that , where

https://doi.org/10.1109/FOCS.2015.14

Enough theory
Let’s play with some example

Back to our plan

1. Find all common subsequences (quite a lot! Is it feasible?)
2. Filter out non-maximal ones (by checking if they are subseq. of other subseq.)

Too many!

We cannot do it without knowing
the other subsequences

How do we check
maximality?

If we don’t have other subsequences?

How do we check
maximality?

The curtain algorithm

https://www.interior-images.ca/theater-curtains/

How do we check
maximality?

The curtain algorithm

Sorry, low budget

https://www.greenme.it/casa-e-giardino/diy-upcycling/10-tende-interne-riciclo-creativo/

The curtain algorithm

Take any input embedding

The curtain algorithm

Take any input embedding

Make it leftmost*

The curtain algorithm

Take any input embedding

Make it leftmost*

*the embedding of W is leftmost if its last match is where and
are the shortest prefixes of X and Y that contain W

The curtain algorithm

Take any input embedding

Make it leftmost*

*the embedding of W is leftmost if its last match is where and
are the shortest prefixes of X and Y that contain W

-> the definition of rightmost is analogous and uses the shortest suffixes

The curtain algorithm

Take any input embedding

Make it leftmost

Make it rightmost

 one piece at a time

 and check for insertions

 (the substrings in between should be non-overlapping)

The curtain algorithm

Is it adcc maximal?

Take any input embedding abdcacd

badbcdcc

The curtain algorithm

Is it adcc maximal?

Take any input embedding

Make it leftmost
abdcacd

badbcdcc

The curtain algorithm

Is it adcc maximal?

Take any input embedding

Make it leftmost

Make it rightmost

 one piece at a time

 and check for insertions

abdcacd

badbcdcc

?

The curtain algorithm

Is it adcc maximal?

Take any input embedding

Make it leftmost

Make it rightmost

 one piece at a time

 and check for insertions

abdcacd

badbcdcc

?

The curtain algorithm

Is it adcc maximal?

Take any input embedding

Make it leftmost

Make it rightmost

 one piece at a time

 and check for insertions

abdcacd

badbcdcc

The curtain algorithm

Is it adcc maximal?

Take any input embedding

Make it leftmost

Make it rightmost

 one piece at a time

 and check for insertions

abdcacd

badbcdcc

The curtain algorithm

Take any input embedding

Make it leftmost

Make it rightmost

 one piece at a time

 and check for insertions

 (the substrings in between should be non-overlapping);

https://doi.org/10.1007/s00453-021-00898-5

The curtain algorithm - why does it work?

(=>) contrapositive

Suppose

https://doi.org/10.1007/s00453-021-00898-5

The curtain algorithm - why does it work?

(=>) contrapositive

Suppose

then
is common subsequence https://doi.org/10.1007/s00453-021-00898-5

The curtain algorithm - why does it work?

(=>) contrapositive

Suppose

then
is common subsequence

But
=>

https://doi.org/10.1007/s00453-021-00898-5

How can we generate all distinct MCS?

How can we generate even one MCS?

How can we generate all distinct MCS?

How can we generate even one MCS?

-> There’s an algorithm for this [Sakai 2018]

-> Not easily extendable to our problem

->

-> ()

https://doi.org/10.1016/j.tcs.2019.06.020

Can you find one MCS?

What’s the simplest way?

abcacd

badcda

Can you find one MCS?

Let’s try a greedy approach

abcacd

badcda

Can you find one MCS?

Let’s try a greedy approach

Read the top string

left-to-right

find matches

abcacd

badcda

Can you find one MCS?

Let’s try a greedy approach

Read the top string

left-to-right

find matches

abcacd

badcda

Can you find one MCS?

Let’s try a greedy approach

Read the top string

left-to-right

find matches

abcacd

badcda

Can you find one MCS?

Let’s try a greedy approach

Read the top string

left-to-right

find matches

abcacd

badcda

Can you find one MCS?

Let’s try a greedy approach

Read the top string

left-to-right

find matches

abcacd

badcda

aca

Can you find one MCS?

Let’s try a greedy approach

Read the top string

left-to-right

find matches

abcacd

badcda

aca

Is this maximal?

Can you find one MCS?

Let’s try a greedy approach

Read the top string

left-to-right

find matches

abcacd

badcda

aca

Is this maximal?

We can check!

Checking maximality

Take any input embedding

abcacd

badcda

Checking maximality

Take any input embedding

Make it leftmost abcacd

badcda

Checking maximality

Take any input embedding

Make it leftmost

Done by construction
abcacd

badcda

Checking maximality

Take any input embedding

Make it leftmost

Done by construction

Make it rightmost

 one piece at a time and check for insertions

abcacd

badcda

Checking maximality

Take any input embedding

Make it leftmost

Done by construction

Make it rightmost

 one piece at a time and check for insertions

It’s also rightmost! -> No possible insertions

abcacd

badcda

Checking maximality

Take any input embedding

Make it leftmost

Done by construction

Make it rightmost

 one piece at a time and check for insertions

It’s also rightmost! -> No possible insertions -> It is maximal!

abcacd

badcda

“aca” is Maximal
Good job everyone!

MCS problem has a greedy solution

Seminar’s over

Open the chips aca is MCS

Not so fast

Read the top string

left-to-right

find matches

dcacab

bdacda

Not so fast

Read the top string

left-to-right

find matches

dcacab

bdacda

Not so fast

Read the top string

left-to-right

find matches

dcacab

bdacda

Not so fast

Read the top string

left-to-right

find matches

dcacab

bdacda

Not so fast

Read the top string

left-to-right

find matches

dcacab

bdacda

dca

Is this maximal?

Not so fast

dcacab

bdacda

dca

Is this maximal?
Not really! daca

Not so fast

dcacab

bdacda

Is this maximal?
Not really! daca

What can we do?

Greedy doesn’t work

Why? dcacab

bdacda

daca

What can we do?

Greedy doesn’t work

Why?

When choosing this

we ignored this

Idea1: We shouldn’t choose c if it one end can be shifted to insert another char
Idea2: Maybe we should keep all possible embeddings found so far

dcacab

bdacda

Idea1

We shouldn’t choose a match if it one end can be shifted to insert another char

ab is the prefix of

abdc

which is an MCS

abadcbc

abbcdc

Idea1

We shouldn’t choose a match if it one end can be shifted to insert another char

One end of c can be shifted

to insert d

abadcbc

abbcdc

Idea1

We shouldn’t choose a match if it one end can be shifted to insert another char

One end of c can be shifted

to insert d

This is not enough to discard c!

abadcbc

abbcdc

Idea1

We shouldn’t choose a match if it one end can be shifted to insert another char

One end of c can be shifted

to insert d

This is not enough to discard c!

There’s an MCS abcc that uses that match!

abadcbc

abbcdc

babababab

baabaab

Idea2: keep all possible embeddings found so far

We can clearly see that

X:

Y:

babababab

baabaab

Watch out for complexity!

We can clearly see that

Hence
X:

Y:

babababab

baabaab

Watch out for complexity!

We can clearly see that

Hence

But we don’t know it yet!

X:

Y:

Watch out for complexity!

babababab

baabaab

2 choices
surely the left one
is the better one

Watch out for complexity!

babababab

baabaab

2 choices
which is the
better one?

Watch out for complexity!

babababab

baabaab

What about here??

Watch out for complexity!

babababab

baabaab

and here???

babababab

baabaab

Watch out for complexity!

The number of embeddings
is exponential

We cannot explore all
configurations in reasonable
time

Other too complex ideas

Use the curtain algorithm:

Input: W common subseq.

recur on

 if

Other too complex ideas

Use the curtain algorithm:

Input: W common subseq.

recur on

 if

bababab

babab

Other too complex ideas

Use the curtain algorithm:

Input: W common subseq.

recur on

 if

bababab

babab

In this case we start with
W=a and W=b

We would analyze almost
all common subseq.

just to output “babab”, i.e.
the only MCS

Y:

abadba

dabbad

X:

Promising ideas: Divide and Conquer?

:X’’

:Y’’

Promising ideas: Divide and Conquer?

aba | dba

dab | bad

X’:

Y’:

:X’’

:Y’’

Promising ideas: Divide and Conquer?

aba | dba

dab | bad

X’:

Y’:

:X’’

:Y’’

Promising ideas: Divide and Conquer?

aba | dba

dab | bad

X’:

Y’:

:X’’

:Y’’

Promising ideas: Divide and Conquer?

:-(

aba | dba

dab | bad

X’:

Y’:

But maybe we are getting closer

Better ideas for incremental construction

Let P be a prefix of an MCS

Better ideas for incremental construction

Let P be a prefix of an MCS

We want to extend it to , such that is still a prefix of some MCS

Better ideas for incremental construction

Let P be a prefix of an MCS

We want to extend it to , such that is still a prefix of some MCS

But how do we know P is a prefix of an MCS if we do not know the MCS?

Prefixes of MCS and MCS of prefixes

The prefix of an MCS is an MCS of a prefix of the two strings

Prefixes of MCS and MCS of prefixes

The prefix of an MCS is an MCS of a prefix of the two strings

???????????
???????????
?

abadba

dabbad

Prefixes of MCS and MCS of prefixes

The prefix of an MCS is an MCS of a prefix of the two strings

abadba

dabbad

Prefixes of MCS and MCS of prefixes

The prefix of an MCS is an MCS of a prefix of the two strings

The prefix “ab”

abadba

dabbad

Prefixes of MCS and MCS of prefixes

The prefix of an MCS is an MCS of a prefix of the two strings

The prefix “ab”

is an MCS of X[0,3) and Y[0,4)

Prefixes of MCS and MCS of prefixes

The prefix of an MCS is an MCS of a prefix of the two strings

Formally:

Prefixes of MCS and MCS of prefixes

The prefix of an MCS is an MCS of a prefix of the two strings

Formally:

The converse doesn’t hold!

MCS of prefixes and prefixes of MCS

An MCS of a prefix of the two strings is not necessarily the prefix of an MCS

abadba

dabbad

MCS of prefixes and prefixes of MCS

An MCS of a prefix of the two strings is not necessarily the prefix of an MCS

abadba

dabbad

MCS of prefixes and prefixes of MCS

An MCS of a prefix of the two strings is not necessarily the prefix of an MCS

The MCS “da”

is not a prefix of any MCS

Recap for incremental construction

● P prefix of

● prefix of

But our goal is exactly finding MCS through prefixes!

We needed the second implication!

● prefix of

We need something stronger

Let P be the prefix of an MCS

We need something stronger

Let P be the prefix of an MCS

(base case: empty string)

We need something stronger

Let P be the prefix of an MCS

(base case: empty string)

It can be proven that for some :

Pc is a valid prefix

1.
2.

We need something stronger

Let P be the prefix of an MCS

(base case: empty string)

It can be proven that for some :

Pc is a valid prefix

1.
2.

So if P is an MCS of a prefix AND the c is in

=> Pc is the prefix of an MCS!

We need something stronger

Let P be the prefix of an MCS

(base case: empty string)

It can be proven that for some :

Pc is a valid prefix

1.
2.

So if P is an MCS of a prefix AND the c is in

=> Pc is the prefix of an MCS! => Pc is the MCS of a prefix!

We need something stronger

Let P be the prefix of an MCS

(base case: empty string)

It can be proven that for some :

Pc is a valid prefix

1.
2.

So if P is an MCS of a prefix AND the c is in

=> Pc is the prefix of an MCS! => Pc is the MCS of a prefix!

We can iterate!

Let

abadba

dabbad

An example

Let

abadba

dabbad

An example

012345

012345

Let

‘a’ = X[2] = Y[4]
abadba

dabbad

An example

012345

012345

Let

‘a’ = X[2] = Y[4]

!

abadba

dabbad

An example

012345

012345

Let

‘a’ = X[2] = Y[4]

!

 is prefix of an MCS

abadba

dabbad

An example

012345

012345

Let

‘a’ = X[2] = Y[4]

!

 is prefix of an MCS

-> ‘aba’ is one MCS of the prefix identified by (2,4)!!

abadba

dabbad

An example

012345

012345

Let

‘a’ = X[2] = Y[4]

!

 is prefix of an MCS

-> ‘aba’ is one MCS of the prefix identified by (2,4)!!

-> Keep going!

abadba

dabbad

An example

012345

012345

What’s Ext?

What’s Ext?

Don’t worry about it

We would just need
40 more minutes

What’s Ext?

Don’t worry about it

Just know that it needs

preprocessing time and

the whole algorithm takes

 delay and space

Going further

Open problems

Improving complexity

We have a conditional lower bound of from LCS

Open problems

Improving complexity

We have a conditional lower bound of from LCS

Testing applications

All applications of LCS can be adapted to MCS, with better (?) performances!

Open problems

Improving complexity

We have a conditional lower bound of from LCS

Testing applications

All applications of LCS can be adapted to MCS, with better (?) performances!

Special cases

Redefining maximality to fit applications such as DNA sequence alignment

Open problems

Improving complexity

We have a conditional lower bound of from LCS

Testing applications

All applications of LCS can be adapted to MCS, with better (?) performances!

Special cases

Redefining maximality to fit applications such as DNA sequence alignment
Or anything that comes to mind!

Open problems

Improving complexity

We have a conditional lower bound of from LCS

Testing applications

All applications of LCS can be adapted to MCS, with better (?) performances!

Special cases

Redefining maximality to fit applications such as DNA sequence alignment
Or anything that comes to mind!

Generalizing to strings

Takeaways

MCS are quite slippery to solve

deceivingly simple

Takeaways

MCS are quite slippery to solve

deceivingly simple, but fun!

I only gave you ONE way to solve the problem

if you have some ideas we could have a chat

Takeaways

MCS are quite slippery to solve

deceivingly simple, but fun!

I only gave you ONE way to solve the problem

if you have some ideas we could have a chat

Great opportunity for research!

Tons of paper on LCS, less than 10 on MCS!

Takeaways

MCS are quite slippery to solve

deceivingly simple, but fun!

I only gave you ONE way to solve the problem

if you have some ideas we could have a chat

Great opportunity for research!

Tons of paper on LCS, less than 10 on MCS!

Great potential, not quite known

Thank you

